読者です 読者をやめる 読者になる 読者になる

のんびり読書日記

日々の記録をつらつらと

k-means++を試し中

Programming

http://d.hatena.ne.jp/kaiseh/20090113/1231864089

上の記事を見て、k-means++が面白そうだったので、ちょっとだけ試してみた。

k-meansは初期値に大きく依存するところが嫌い。初期値への依存度を軽減するために、初期値を変えて何回か試行してその中で一番良い結果のものを使用する、なんてことをしないといけない。そのため処理時間も馬鹿にならなくなってしまうので、ちょっとこれじゃあなあ…ということで使ってなかった。

でも今回のk-means++は初期値をうまく求めることで、精度と速度の向上が得られるらしい。これはうれしい!

論文著者のページにサンプルコードがあったので試してみようと思ったんだけど、MFCを使っているみたいで僕の環境ではコンパイルできず…。
http://www.stanford.edu/~darthur/kMeansppTest.zip

とりあえず上のサンプルと論文を参考にしながら、Perlでサンプルを書いてみた。C++で書きたかったけど、それは今度で。

#!/usr/bin/perl 
# 
# k-means++
# (algorithm: http://www.stanford.edu/~darthur/)
#

use strict;
use warnings;
use Data::Dumper;
use List::Util qw(shuffle);

sub choose_random_centers {
    my ($vectors, $num_center) = @_;
    my @ids = keys %{ $vectors };
    @ids = shuffle @ids;
    my @centers = map { $vectors->{$_} } @ids[0 .. $num_center-1];
    return \@centers;
}

sub choose_smart_centers {
    my ($vectors, $num_center) = @_;
    my $cur_potential = 0;
    my @centers;

    # choose one random center
    my $vector = (shuffle values %{ $vectors })[0];
    push @centers, $vector;
    my %closest_dist;
    foreach my $id (keys %{ $vectors }) {
        $closest_dist{$id} = get_distance($vectors->{$id}, $vector);
        $cur_potential += $closest_dist{$id};
    }

    # choose each center
    for (my $i = 1; $i < $num_center; $i++) {
        my $randval = rand() * $cur_potential;
        my $center_id;
        foreach my $id (keys %{ $vectors }) {
            $center_id = $id;
            last if $randval <= $closest_dist{$id};
            $randval -= $closest_dist{$id};
        }
        my $new_potential = 0;
        foreach my $id (keys %{ $vectors }) {
            my $dist = get_distance($vectors->{$id}, $vectors->{$center_id});
            $closest_dist{$id} = $dist if $dist < $closest_dist{$id};
            $new_potential += $closest_dist{$id};
        }
        push @centers, $vectors->{$center_id};
        $cur_potential = $new_potential;
    }
    return \@centers;
}

# Format: id\tval1,val2,val3,...
sub read_vectors {
    my $fh = shift;
    my %vectors;
    while (my $line = <$fh>) {
        chomp $line;
        next if !$line;
        
        my ($id, $vecstr) = split /\t/, $line;
        if (!$id || !$vecstr) {
            warn "Illegal format: $line\n";
        }
        my @vector = split /,/, $vecstr;
        $vectors{$id} = \@vector;
    }
    return \%vectors;
}

sub get_distance {
    my ($vec1, $vec2) = @_;
    my $size = scalar @{ $vec1 };
    my $dist = 0;
    for (my $i = 0; $i < $size; $i++) {
        $dist += ($vec1->[$i] - $vec2->[$i]) * ($vec1->[$i] - $vec2->[$i]);
    }
    return $dist;
}

sub assign_clusters {
    my ($vectors, $centers) = @_;
    my %assign;
    foreach my $id (keys %{ $vectors }) {
        my $num_center = scalar @{ $centers };
        my $min_dist = -1;
        my $min_index;
        for (my $i = 0; $i < $num_center; $i++) {
            my $dist = get_distance($vectors->{$id}, $centers->[$i]);
            if ($min_dist < 0 || $min_dist > $dist) {
                $min_dist = $dist;
                $min_index = $i;
            }
        }
        $assign{$id} = $min_index;
    }
    return \%assign;
}

sub move_centers {
    my ($vectors, $assign, $centers) = @_;
    my @clusters;
    foreach my $id (keys %{ $assign }) {
        my $idx = $assign->{$id};
        $clusters[$idx] = [] if !defined $clusters[$idx];
        push @{ $clusters[$idx] }, $id;
    }
    for (my $i = 0; $i < scalar @{ $centers }; $i++) {
        my $cluster = $clusters[$i];
        next if !$cluster;
        my @new_center;
        foreach my $id (@{ $cluster }) {
            my $vector = $vectors->{$id};
            for (my $j = 0; $j < scalar @{ $vector }; $j++) {
                $new_center[$j] += $vector->[$j] / scalar(@{ $cluster });
            }
        }
        $centers->[$i] = \@new_center if @new_center;
    }
}

sub kmeans {
    my ($vectors, $centers, $num_iter) = @_;
    my $assign = assign_clusters($vectors, $centers);

    for (my $i = 0; $i < $num_iter; $i++) {
        print " .. k-means loop No.$i\n";
        move_centers($vectors, $assign, $centers);
        #$centers = move_centers($vectors, $assign, scalar @{ $centers });
        my $new_assign = assign_clusters($vectors, $centers);
        my $is_changed = 0;
        foreach my $id (keys %{ $assign }) {
            if ($assign->{$id} != $new_assign->{$id}) {
                $is_changed = 1;
                last;
            }
        }
        last if !$is_changed;
        $assign = $new_assign;
    }
    return $assign;
}

$| = 1;

sub main {
    my ($path, $num_center) = @ARGV;
    if (!$path || !$num_center) {
        print "Usage: kmeanspp.pl inputfile num_center\n";
        exit 1;
    }
    open my $fh, "<$path" or die "cannot open: $path";
    my $vectors = read_vectors($fh);
    my $num_vectors = scalar keys %{ $vectors };
    if ($num_center <= 0 || $num_center > $num_vectors) {
        die 'number of centers must be >0 and <=number_of_vectors';
    }

    print "Choose initial centers\n";
    #my $centers = choose_random_centers($vectors, $num_center);
    my $centers = choose_smart_centers($vectors, $num_center);
    print "Do k-means clustering\n";
    my $assign = kmeans($vectors, $centers, 100);
    print "assign: ". Dumper($assign);
}

main()

__END__

普通のk-meansとk-means++の違いは、上のコードだと choose_random_centers と choose_smart_centers というところ。ランダムに中心を選択するか、各ノードと中心の2乗距離を使った確率で選択するかの違い。

実行する時は、下のフォーマット(id\tv1,v2,...)のファイルを用意して、

d1  1,2
d2  2,2
d3  4,2
d4  1,1
d5  2,1
d6  4,1

入力ファイル、中心の数を指定して実行。下の場合だと2個の中心にわけるよう指定している。ちゃんと整形して出力しろよって言われそうだけど、とりあえずはそのままで…。

% perl kmeanspp.pl input.txt 2
Choose initial centers
Do k-means clustering
 .. k-means loop No.0
assign: $VAR1 = {
          'd3' => 1,
          'd1' => 0,
          'd2' => 0,
          'd4' => 0,
          'd5' => 0,
          'd6' => 1
        };

ちゃんとテストしたわけじゃないので、本当にk-means++として動くのか自信がないけど、とりあえずさらしておく。

もっと大きなデータ、wikipediaとかで試したいけど、あの規模だとやっぱりPerlじゃちょっと厳しいかなと思うので、次はC++で書き直す。結果が出次第、またブログに書くぞっと。